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Stabilized vortices in layered Kerr media
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In this paper, we demonstrate the possibility of stabilizing beams with angular momentum propagating in
Kerr media against filamentation and collapse. Very long propagation distances can be achieved by combining
the choice of an appropriate layered medium with alternating focusing and defocusing nonlinearities with the
presence of an incoherent guiding beam which is itself stabilized in this medium. The applicability of the
results to the field of matter waves is also discussed.
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\ortices have been a source of fascination since the works
of Empedocles, Aristotle, and Descartes, who tried to explaiwhereu(x,y,z): R2 X R* — C is the slowly varying amplitude
the formation of the Earth, its gravity, and the dynamics ofof the beam envelopeéy =%/ x>+ ¢/ dy?, andg(z) is a peri-
the solar system as due to primordial cosmic vortices. Manydic function accounting for théspatially modulaternon-
interesting problems related to vortices are open in severgearity. It is well known that, ifg is constant, there exist
fields, such as fluid mechanics, superconductivity, superflustationary solutions of E¢1) which are of the formu(r ,2)

idity, light propagation, Bose-Einstein condensati®EC), =@, (r)é™ and satisfy
cosmology, biosciences, or solid state phy$ics6).
In wave mechanics, a vortex is a screw phase dislocation, AD, - 20Dy - 2g|D, 2P, = 0. (2)

or defect] 7], where the amplitude of the field vanishes. The

phase around the singularity has an integer number of Wmdfbr each positive\, there exist an infinite number of radially

ings, ¢, which plays the role of an angular momentum. For ; ; . . o

. . > " : . symmetric solutions decaying exponentially at infinity. These

fields with nonvanishing boundary conditions, this number is . :

: . . solutions are characterized by the number of nddéksey

a conserved quantity and governs the interactions between : o
X X . . ave. The one with zero nodes has also the minimum value

vortices as if they were endowed with electrostatic chargesof the powerl = [|d,| between all the possible solutions of

Thus, ¢ is usually called théopological chargeof the defect. P K P

. . . g.(2). Itis called theground stateor Townes solitorand we
In optics there has been a strong interest in the so-called. . L
; ) SO . will denote it as®y(r). Moreover, the Townes soliton im-
vortex solitons i.e., robust distributions of light of vortex

type in which nonlinearity could compensate diffraction stablein the sense that small perturbations of a Townes soli-

leading to stationary propagation. However, in self-focusingtsc;)r:e'an('jt'al data lead the solution of Eq1) to collapse or

Kerr media, a finite-size beam containing a vortex always It has b d that iat dulati fh
destabilizes and forms a filamentary struct[8& This also as been proposed that an appropriate moduiation ot the
Kerr coefficient of the optical material along the propagation

stands for saturable self-focusing nonlinearities \Vortex . . . .
solitons have been studied in many other different opticafj'ref‘ct'on COUI.d lead to f_ocusmg and expansion of the propa-
gating beam in alternating regions, thus yielding a stabiliza-

systemgsee, e.g., the reviefil0]) and in most realistic cases fion of the optical beam on averagé2—16. It has been

they tend to be unstable. . ; . .
In this paper, we propose to use layered Kerr mediaShown that the structure which arises when the nonlinearity

which are self-focusing on average, to obtain stable propagis modulated as described above is a stabilized Townes soli-
tion of vortices up to very long distances. Our ideas are als
extended to the field of matter waves.

As it is precisely stated in Refl11], wheng is negative,

on (ST9 [17].

B. Partially stabilized vortices

However, Townes solitons are not the only stationary so-
IIl. STABILIZED SOLITONS lutions of Eq.(1) for constanty. There also exist vortex-type
A. Stabilized Townes solitons solutions of the formu(r,z)=d,(r)e‘%™? which are un-
stable as well. One could naively expect that the same stabi-
The propagation of a paraxial monochromatic beam in dization mechanism proposed in REf2] could be applied to
Kerr medium is modeled by equations of the tyfie adi- achieve stabilization of these solutions, i.e., to induce alter-
mensional units native expanding and squeezing cycles of the vortex by a
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radiation which is removed by the absorbing boundary con-
ditions of our numerical scheme. However, in Figs.
1(h)-1(j), we see that the addition of noise provokes the
early filamentation of the vortex so the stabilization mecha-
nism is not valid any more. In this paper, we have chosen a
smooth form for the modulatiog(z) but similar results are
obtained whemy(2) is taken as a piecewise constant function.
We have made an extensive search in the parameter space
for modulations of the forng(z)=gy+g; cos2z and have
not been able to find any parameter combination allowing
stabilization of the vortex. Concerning finite-dimensional re-
duced models for the evolution of the effective width of the
solutions, such as those successfully used for nodeless beams
in Refs.[13-16, we must stress that these formulations do
not reflect correctly the dynamics and instabilities of vortex
solutions.

Ill. VECTOR SYSTEMS

From the previous analysis it seems that a vortex cannot
be stabilized in the framework of E@l), i.e., in scalar sys-
tems. Recent works point out the fact that the incoherent
interaction of two components could provide, in saturable
media, an effective waveguide for the vortex, leading to a
more stable behavidil8-20. Following this idea, we con-
sider now a vector two-component system with Kerr interac-
tions of the form

. dUg 1
. . - i— == SAuy +9(2)(agg|ugl® + agup)uy, (33
FIG. 1. (Color onling Evolution of initial data of vortex type 9z 2
obtained as a stationary solution of H@) for g,=-24.15 under
different parameter variationga)—(c) Evolution for constanig= .dUy 1 9 2
-8x and a noise of 1% in amplitudéd)—(f) Evolution with modu- 7 T 5Au2 +9(2) (g un]* + azuy[)up,  (3b)

lated nonlinearityg(z) =—8s+ 207 cos 4@ without noise.(g) Isos-
urface plot ofu(x,y, 2) of the same simulation as id)—(f) showing ~ where a €R are the nonlinear coupling coefficients and
the development of the instabilitfh)—(j) Same agd)—(f) with ad-  g(z) accounts for the modulation of the nonlinearity. We will
dition of noise. denotel;=[2|u;|?dxdy. Although this system is conserva-
tive, in our numerical simulations we incorporate absorbing
periodic modulation of the nonlinear coefficient. To studyboundary conditions in order to get rid of the radiation.
further this possibility, we have obtained numerically theTherefore, in practice, there will be a decreasd;aduring
profiles of vortex solutions of Eq(l) corresponding to a the propagation.
constant value ofj,=-24.15(the critical one for vortex so- Equations (3) are a two-dimensional extension of the
lutions), by using a standard shooting method. We have theanakov systenj21]. Among other situations, these equa-
studied the evolution of this stationary solution numericallytions model the propagation of two circularly polarized
in different situations using an appropriate pseudospectrdleams with opposite polarizatioris that casea;;=a,,=1,
method[17]. Obviously if we compute the evolution of this a;,=a,;=2). In the context of BEC, Eq¥3) (with an addi-
vortex solution for constarg> g, it would expand, while for  tional trapping termdescribe the dynamics of multicompo-
g=do<g, it would collapse. In the latter case, the addition of nent quasi-two-dimensional condensatgsbeing the wave
some kind of perturbation breaking the radial symmetry offunctions for the atomic species. The formation of vector
the initial profile yields the vortex to break up into filaments solitons composed of appropriate fractions of Townes states
as can be seen in Figs(al-1(c), wheregy=-8w<g, and a has been studied in R22].
noise of 1% in amplitude has been added to the initial con- Our idea is to choosg(z) to achieve the stabilization of
ditions. In Figs. 1d)-1(f), we present some snapshots of thethe Townes solitoru,. As the coupling terms in Eqg3)
evolution of the vortex after the addition of a stabilizing termwould provide an effective waveguide fog, it seems rea-
to the nonlinearity g(z2)=go+g; cosQz for gy=—8m, g;  sonable that, wheh, <1, the guiding effect will dominate
=20m, 1=40. We can see how the periodic modulation ofover self-interaction and the vortex could become stabilized.
the nonlinearity retards the filamentation of the vortex, which
now propagates for a longer distance before breaking into
several stabilized solitons. Since each emerging beam is Let us first consider the case of constgréind|,<1; so
close to a STS, the excess energy is eliminated in the form dhat Eqgs.(3) become

A. Limit of small u,
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.duUy 1
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Ia_zz = <_ EA + ga21|u1|2) up. (4b) ,.".N,',‘,{,..‘.u_»pmm_

Taking uy(r,2)=dy(r)e*?, then Eq.(4b) is a linear two-
dimensional Schrodinger problem in which the role of the
potential is played by®,%. Following Ref.[23], we can
bound the number of-wave bound states in this potential by

N, < (ayg/ ¢ )f r|uy 2. s 03]
R+

LA A A A 2( ) = .
SONDALAAAAAASRNN P AN P AN AP PAP AP AA

\ortex-type solutions with the smallest topological charge
are those with¢=1. Thus, taking into account that for a
Townes solitongl;=0.931, we getN,-;<0.931a,;. There-
fore, we can expect the existence of a uniqeel stationary
vortex solution of Eq(4b) in the caseay;=2. This will be oints on(x,y) €[-40,40, showing stablébut dissipative due to
denoted hereafter as=V/(r)e e, L_et us notice thqt _fpr fhe effect( o?‘oratgliatioh gropagatic?n of terfe vortexpin the range
(=2 we get alway$\l€>2< 1, thqs ruling out the pOSSIbI_“ty z€[0,500. (a) Initial radial profiles. (b) Isosurface plot of
of obtaining higher-order vortices. We have numerically,,x y,2) spanning all the propagation rande) Evolution of the
found the profile of this vortex solutiow(r) by using a stan-  norms 12z), 1¥42) and of the amplitudesh; (2)=maxuy,
dard shooting method. Ax(2)=maxy.)|uy| of both components.

Choosing an appropriate modulation fgrallows us to
stabilize u;. For Eq. (4b), the potential—the stabilized
Townes soliton—oscillates with a fast frequency of the ordefs fyly stabilized up to the maximum propagation distances
of (2 and another slower one of dynamical origir6]. In this  gy,died. However, a continuous loss of energy is observed
linear case, we can apply w, the quantum-mechanical §,ring propagation. We think that this power damping is due
theory of fast perturbationi24] to account for the effect of 4, o giation emitted by the vortex and it is related to the

the fasF modulation on thg vortex_. The main result of thIScontinuous background oscillations of the stabilizing Townes
theory is that the vortex will remain unaffected by the fastb eam

perturbation in the potential provided the modulation period For larger values of (e.g., @=0.32 as in Fig. § the

T satisfiesd, H<1/T. In our case, vortex destabilizes in a spiraling form at long propagation
T distances due to the effect of nonlinear interactions between
H= Ef [_ EA + g(z)a21|u1|2]dz (6) the gyiding Townes soliton and the vortex. This kinq of in-
TJo 2 stability is a known phenomenon which also occurs in other
o o ) ] situations where several components intefaet, e.g., Ref.
and this inequality impose€s<1.1 which require<)> 6. [25]). Although the perturbation is not small, the vortex

On the other side of the spectrum, the STS also has ag,hagates for very long distances of about 300 propagation
oscillation of lower frequency, but then adiabaticity allows units (compare this with the results shown in Fig. In the

us to expect a modulation of the same frequency in the Vorfegion of stable propagation, the vortex amplitude decays
tex oscillations.

To verify these ideas in the limit of small, we have slowly due to the emission of radiation until a stabilized

simulated Egs.(4) with initial conditions u,(r,0)=®dq(r), V(rarfittorr Z?II'[tiorr: LS :orrg_ed.t Itr;] tir:'i prrr(;cetss, btci)th (igm;r)ﬂmt-:;n;s
Uy(r,8,0)=V(r)e’ andg(z)=-2m+8m cos 4@. Full stabili- € adiation to readjust their norms to satisfy the relatio

zation of the vortex is observed, its oscillations following the|1+|2:|T°W”e£22]' From Fig. 3i) it is clear that the oscilla-

pattern predicted above, i.e., there is only a residual fast Oél_lons Off the vortex %mtrr)]“ttjde bas'c"?‘”y contain o?ly thel
cillation in the vortex component and its slow oscillation slower frequency and that our prévious arguments apply
follows that of the stabilized Townes soliton in. here. The addition of noise to the initial data of 1% in am-

plitude triggers the instability faster, but even in that case the

vortex propagates for more than 125 adimensional units be-

fore the instability sets in. Since vortices destabilize in a
Now, we look for solutions of Eqs(3) with initial data  spiraling form in order to get large stable evolution times, it

Uy(r,00=dy(r), uy(r,0,0=aV(r)¢’ and g(2=-2=7 is necessary to align precisely both beam centers. Specifi-

+87 cos 4@ [similar results are found starting with station- cally, a beam center shift of around 1% of the guiding beam

ary solutions of Eqs(3)]. size would lead to a decrease of the propagation distance to
For small values o (e.g.,a=0.1 as in Fig. 2 the vortex  about 50 adimensional units.

0 100 200 , 300 400 500

FIG. 2. (Color onling Solutions of Egs.(3) for initial data
Uy(r,0)=dg(r), u,=aV(r)e? with «=0.1 in a grid of 810<810

B. Fully nonlinear regime
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A difficulty with a layered setup is the possibility of ret-
roreflection in the interfaces. The reflection coefficient for a
planar wave which incides perpendicular to the boundary
between two linear optical materials with refractive indexes
n, andn, is given by

Np— Ny 2

()

Ny + Ny

Taking indexes of the formn,=ny+n,|¥|?> and ny=ng
+n,| |2 (one focusing and the other one defocuginge can
estimate

(ny— n2)|\I'|2
2ng

2
R= . (8)

e SO Takingn,|W[?~ 1072 andn,=-6/10n, as in our simulations

0 150 z 300 450 (with ny=1.6 for the two layers we haveR~2.5X 107",

. ' : Thus, choosing two nonlinear materials with similar linear
1 A,(2) () refractive indexegas in the case of G3and some Ga:lLa:S-
based glassgsthe number of layers that produce a loss of
10% in the input signal would be about4l0°, which ex-
ceeds the stability range of the vortex and is well below the

e
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S

0 ' : material losses.
0 150 z 300 450
FIG. 3. (Color onling Same as Fig. 2 forw=0.32. (a)—(€) B. Feshbach resonance managed Bose-Einstein condensates

Pseudocolor plots ofiy(x,y,z) for z=0, 200, 295, 305, 450()
Isosurface plot ofi,(x,y,z) spanning all the propagation randg)
Details of the region in which the vortex spirals out fram for
z€([280,319. (h) Evolution of the norms of both components

The previous results have also implications in the field of
matter waves because of the close analogy of E)swith
the equations of evolution of a multicomponent Bose-
1¥2(2), 13%(2) showing the readjustment of the norms after the Vor_Einstei_n conde_nsate_‘ in .the mean-field approximation. The
tex is ejected and a stabilized vector soliton is formgdAmpli- analysis of vortices in dilute-gas BECs has been a very hot

tudes Aq(2)=maxyy|uy] and Ay 2)=maxyylu] of both topic_: in recent years, especially after their experimental gen-
components. ' ' eration with different setupg}—6).

In multicomponent BEC systems, the interaction coeffi-
cientsa; are proportional to the respective scattering lengths.

IV. PRACTICAL IMPLEMENTATION Although Bose-Einstein. condensgtes are 'fuIIy three-
dimensional, the effective two-dimensionality can be
A. Layered Kerr media achieved by confining the condensate tightly along a specific

Equation (1) is obtained from the paraxial propagation direction[26,27. The conditionN; <0.931a,; has relevance
equation by rescaling the transverse coordinates with th&ince it imposes restrictions to the atomic species which can
beam sizelL and the propagation coordinate witttkyn,, be used to trap a vortex. For instance, the cross-interaction
wherek, is the wave number ana, is the linear refraction coefficient in multicomponent condensates made of different
index. For a Nd:Yag laser with=1.064um and a beam size hyperfine levels of’Rb does not satisfy this condition. How-
of L=20\, we obtain that, for materials witm,=1.6, a  €ver, bosonic K-Rb mixtures such as the one described in
propagation distance @=1 in our simulations corresponds Refs.[28,29 could be used because of the large scattering
to 4 mm approximately. Thus, between @g. 1) and 4000 length of the collisions K-Rb. Our predictions would imply
(Fig. 3 layers 335um-thick are needed to reproduce our the existence of self-supported vortices which could be gen-
results, which is achievable experimentally. We can also oberated using Feshbach resonance management techniques.
tain thatn,|W|?= 103, whereV is the physical beam. As an

experimental setup, we consider a periodic structure con- V. CONCLUSIONS
structed with solid glass layers of GAs;Se, (self-
focusing nonlinearityand a liquid as CS(defocusing ther- In this work, we have studied the possibility of stabilizing

mal nonlinearity filling the empty spaces between the layers.beams with angular momentuitvortice9 propagating in

For GgoAs;;Se, we haven,=2.2x 10 cn?/GW for Kerr media against filamentation and collapse. The proce-
=1.064um. Therefore, we need a powl|>=5 GW/cn?, dure used consists in taking an appropriate layered medium
which is quite realistic for a Nd:Yag laser. Finally, by adjust- with alternating focusing and defocusing nonlinearities, so
ing the length of the pulses, th® value for CS can be that one can retard the filamentation of the beam. Neverthe-
suited adequately to reproduce tijg) function. less, the addition of a slight noise makes the beam break into
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