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In this paper, we demonstrate the possibility of stabilizing beams with angular momentum propagating in
Kerr media against filamentation and collapse. Very long propagation distances can be achieved by combining
the choice of an appropriate layered medium with alternating focusing and defocusing nonlinearities with the
presence of an incoherent guiding beam which is itself stabilized in this medium. The applicability of the
results to the field of matter waves is also discussed.
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I. INTRODUCTION

Vortices have been a source of fascination since the works
of Empedocles, Aristotle, and Descartes, who tried to explain
the formation of the Earth, its gravity, and the dynamics of
the solar system as due to primordial cosmic vortices. Many
interesting problems related to vortices are open in several
fields, such as fluid mechanics, superconductivity, superflu-
idity, light propagation, Bose-Einstein condensationsBECd,
cosmology, biosciences, or solid state physicsf1–6g.

In wave mechanics, a vortex is a screw phase dislocation,
or defectf7g, where the amplitude of the field vanishes. The
phase around the singularity has an integer number of wind-
ings, ,, which plays the role of an angular momentum. For
fields with nonvanishing boundary conditions, this number is
a conserved quantity and governs the interactions between
vortices as if they were endowed with electrostatic charges.
Thus,, is usually called thetopological chargeof the defect.

In optics there has been a strong interest in the so-called
vortex solitons, i.e., robust distributions of light of vortex
type in which nonlinearity could compensate diffraction
leading to stationary propagation. However, in self-focusing
Kerr media, a finite-size beam containing a vortex always
destabilizes and forms a filamentary structuref8g. This also
stands for saturable self-focusing nonlinearitiesf9g. Vortex
solitons have been studied in many other different optical
systemsssee, e.g., the reviewf10gd and in most realistic cases
they tend to be unstable.

In this paper, we propose to use layered Kerr media,
which are self-focusing on average, to obtain stable propaga-
tion of vortices up to very long distances. Our ideas are also
extended to the field of matter waves.

II. STABILIZED SOLITONS

A. Stabilized Townes solitons

The propagation of a paraxial monochromatic beam in a
Kerr medium is modeled by equations of the typesin adi-
mensional unitsd

i
]u

]z
= −

1

2
Du + gszduuu2u, s1d

whereusx,y,zd :R23R+→C is the slowly varying amplitude
of the beam envelope,D=]2/]x2+]2/]y2, andgszd is a peri-
odic function accounting for thesspatially modulatedd non-
linearity. It is well known that, ifg is constant, there exist
stationary solutions of Eq.s1d which are of the formusr ,zd
=Fksr deilkz and satisfy

DFk − 2lkFk − 2guFku2Fk = 0. s2d

As it is precisely stated in Ref.f11g, wheng is negative,
for each positivelk there exist an infinite number of radially
symmetric solutions decaying exponentially at infinity. These
solutions are characterized by the number of nodesk they
have. The one with zero nodes has also the minimum value
of the powerI =euFku between all the possible solutions of
Eq. s2d. It is called theground stateor Townes solitonand we
will denote it asF0srd. Moreover, the Townes soliton isun-
stablein the sense that small perturbations of a Townes soli-
ton initial data lead the solution of Eq.s1d to collapse or
spread.

It has been proposed that an appropriate modulation of the
Kerr coefficient of the optical material along the propagation
direction could lead to focusing and expansion of the propa-
gating beam in alternating regions, thus yielding a stabiliza-
tion of the optical beam on averagef12–16g. It has been
shown that the structure which arises when the nonlinearity
is modulated as described above is a stabilized Townes soli-
ton sSTSd f17g.

B. Partially stabilized vortices

However, Townes solitons are not the only stationary so-
lutions of Eq.s1d for constantg. There also exist vortex-type
solutions of the formusr ,zd=F,srdei,ueilz which are un-
stable as well. One could naively expect that the same stabi-
lization mechanism proposed in Ref.f12g could be applied to
achieve stabilization of these solutions, i.e., to induce alter-
native expanding and squeezing cycles of the vortex by a
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periodic modulation of the nonlinear coefficient. To study
further this possibility, we have obtained numerically the
profiles of vortex solutions of Eq.s1d corresponding to a
constant value ofgv=−24.15sthe critical one for vortex so-
lutionsd, by using a standard shooting method. We have then
studied the evolution of this stationary solution numerically
in different situations using an appropriate pseudospectral
methodf17g. Obviously if we compute the evolution of this
vortex solution for constantg.gv it would expand, while for
g=g0,gv it would collapse. In the latter case, the addition of
some kind of perturbation breaking the radial symmetry of
the initial profile yields the vortex to break up into filaments
as can be seen in Figs. 1sad–1scd, whereg0=−8p,gv and a
noise of 1% in amplitude has been added to the initial con-
ditions. In Figs. 1sdd–1sfd, we present some snapshots of the
evolution of the vortex after the addition of a stabilizing term
to the nonlinearity gszd=g0+g1 cosVz for g0=−8p, g1

=20p, V=40. We can see how the periodic modulation of
the nonlinearity retards the filamentation of the vortex, which
now propagates for a longer distance before breaking into
several stabilized solitons. Since each emerging beam is
close to a STS, the excess energy is eliminated in the form of

radiation which is removed by the absorbing boundary con-
ditions of our numerical scheme. However, in Figs.
1shd–1sjd, we see that the addition of noise provokes the
early filamentation of the vortex so the stabilization mecha-
nism is not valid any more. In this paper, we have chosen a
smooth form for the modulationgszd but similar results are
obtained whengszd is taken as a piecewise constant function.

We have made an extensive search in the parameter space
for modulations of the formgszd=g0+g1 cosVz and have
not been able to find any parameter combination allowing
stabilization of the vortex. Concerning finite-dimensional re-
duced models for the evolution of the effective width of the
solutions, such as those successfully used for nodeless beams
in Refs. f13–16g, we must stress that these formulations do
not reflect correctly the dynamics and instabilities of vortex
solutions.

III. VECTOR SYSTEMS

From the previous analysis it seems that a vortex cannot
be stabilized in the framework of Eq.s1d, i.e., in scalar sys-
tems. Recent works point out the fact that the incoherent
interaction of two components could provide, in saturable
media, an effective waveguide for the vortex, leading to a
more stable behaviorf18–20g. Following this idea, we con-
sider now a vector two-component system with Kerr interac-
tions of the form

i
]u1

]z
= −

1

2
Du1 + gszdsa11uu1u2 + a12uu2u2du1, s3ad

i
]u2

]z
= −

1

2
Du2 + gszdsa21uu1u2 + a22uu2u2du2, s3bd

where ajk[R are the nonlinear coupling coefficients and
gszd accounts for the modulation of the nonlinearity. We will
denote I j =eR2uuju2dxdy. Although this system is conserva-
tive, in our numerical simulations we incorporate absorbing
boundary conditions in order to get rid of the radiation.
Therefore, in practice, there will be a decrease ofI j during
the propagation.

Equations s3d are a two-dimensional extension of the
Manakov systemf21g. Among other situations, these equa-
tions model the propagation of two circularly polarized
beams with opposite polarizationssin that casea11=a22=1,
a12=a21=2d. In the context of BEC, Eqs.s3d swith an addi-
tional trapping termd describe the dynamics of multicompo-
nent quasi-two-dimensional condensates,uj being the wave
functions for the atomic species. The formation of vector
solitons composed of appropriate fractions of Townes states
has been studied in Ref.f22g.

Our idea is to choosegszd to achieve the stabilization of
the Townes solitonu1. As the coupling terms in Eqs.s3d
would provide an effective waveguide foru2, it seems rea-
sonable that, whenI2! I1, the guiding effect will dominate
over self-interaction and the vortex could become stabilized.

A. Limit of small u2

Let us first consider the case of constantg and I2! I1 so
that Eqs.s3d become

FIG. 1. sColor onlined Evolution of initial data of vortex type
obtained as a stationary solution of Eq.s1d for gv=−24.15 under
different parameter variations.sad–scd Evolution for constantg=
−8p and a noise of 1% in amplitude.sdd–sfd Evolution with modu-
lated nonlinearitygszd=−8p+20p cos 40z without noise.sgd Isos-
urface plot ofusx,y,zd of the same simulation as insdd–sfd showing
the development of the instability.shd–sjd Same assdd–sfd with ad-
dition of noise.
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i
]u1

]z
. −

1

2
Du1 + ga11uu1u2u1, s4ad

i
]u2

]z
. S−

1

2
D + ga21uu1u2Du2. s4bd

Taking u1sr ,zd=F0srdeil0z, then Eq. s4bd is a linear two-
dimensional Schrödinger problem in which the role of the
potential is played byuF0u2. Following Ref. f23g, we can
bound the number of,-wave bound states in this potential by

N, , sa21g/ , dE
R+

r uu1u2dr. s5d

Vortex-type solutions with the smallest topological charge
are those with,=1. Thus, taking into account that for a
Townes solitongI1=0.931, we getN,=1,0.931a21. There-
fore, we can expect the existence of a unique,=1 stationary
vortex solution of Eq.s4bd in the casea21=2. This will be
denoted hereafter asu2=Vsrdeiueilvz. Let us notice that for
,ù2 we get alwaysN,ù2,1, thus ruling out the possibility
of obtaining higher-order vortices. We have numerically
found the profile of this vortex solutionVsrd by using a stan-
dard shooting method.

Choosing an appropriate modulation forg allows us to
stabilize u1. For Eq. s4bd, the potential—the stabilized
Townes soliton—oscillates with a fast frequency of the order
of V and another slower one of dynamical originf16g. In this
linear case, we can apply tou2 the quantum-mechanical
theory of fast perturbationsf24g to account for the effect of
the fast modulation on the vortex. The main result of this
theory is that the vortex will remain unaffected by the fast
perturbation in the potential provided the modulation period

T satisfiesDu2
H̄!1/T. In our case,

H̄ =
1

T
E

0

T F−
1

2
D + gszda21uu1u2Gdz s6d

and this inequality imposesT!1.1 which requiresV@6.
On the other side of the spectrum, the STS also has an

oscillation of lower frequency, but then adiabaticity allows
us to expect a modulation of the same frequency in the vor-
tex oscillations.

To verify these ideas in the limit of smallu2, we have
simulated Eqs.s4d with initial conditions u1sr ,0d=F0srd,
u2sr ,u ,0d=Vsrdeiu, andgszd=−2p+8p cos 40z. Full stabili-
zation of the vortex is observed, its oscillations following the
pattern predicted above, i.e., there is only a residual fast os-
cillation in the vortex component and its slow oscillation
follows that of the stabilized Townes soliton inu1.

B. Fully nonlinear regime

Now, we look for solutions of Eqs.s3d with initial data
u1sr ,0d=F0srd, u2sr ,u ,0d=aVsrdeiu and gszd=−2p
+8p cos 40z fsimilar results are found starting with station-
ary solutions of Eqs.s3dg.

For small values ofa se.g.,a=0.1 as in Fig. 2d, the vortex

is fully stabilized up to the maximum propagation distances
studied. However, a continuous loss of energy is observed
during propagation. We think that this power damping is due
to radiation emitted by the vortex and it is related to the
continuous background oscillations of the stabilizing Townes
beam.

For larger values ofa se.g., a=0.32 as in Fig. 3d, the
vortex destabilizes in a spiraling form at long propagation
distances due to the effect of nonlinear interactions between
the guiding Townes soliton and the vortex. This kind of in-
stability is a known phenomenon which also occurs in other
situations where several components interactssee, e.g., Ref.
f25gd. Although the perturbation is not small, the vortex
propagates for very long distances of about 300 propagation
units scompare this with the results shown in Fig. 1d. In the
region of stable propagation, the vortex amplitude decays
slowly due to the emission of radiation until a stabilized
vector soliton is formed. In this process, both components
emit radiation to readjust their norms to satisfy the relation
I1+ I2= ITownesf22g. From Fig. 3sid it is clear that the oscilla-
tions of the vortex amplitude basically contain only the
slower frequency and that our previous arguments apply
here. The addition of noise to the initial data of 1% in am-
plitude triggers the instability faster, but even in that case the
vortex propagates for more than 125 adimensional units be-
fore the instability sets in. Since vortices destabilize in a
spiraling form in order to get large stable evolution times, it
is necessary to align precisely both beam centers. Specifi-
cally, a beam center shift of around 1% of the guiding beam
size would lead to a decrease of the propagation distance to
about 50 adimensional units.

FIG. 2. sColor onlined Solutions of Eqs.s3d for initial data
u1sr ,0d=F0srd, u2=aVsrdeiu with a=0.1 in a grid of 8103810
points onsx,yd[ f−40,40g, showing stablesbut dissipative due to
the effect of radiationd propagation of the vortex in the range
z[ f0,500g. sad Initial radial profiles. sbd Isosurface plot of
u2sx,y,zd spanning all the propagation range.scd Evolution of the
norms I1

1/2szd, I2
1/2szd and of the amplitudesA1szd=maxsx,yduu1u,

A2szd=maxsx,yduu2u of both components.
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IV. PRACTICAL IMPLEMENTATION

A. Layered Kerr media

Equation s1d is obtained from the paraxial propagation
equation by rescaling the transverse coordinates with the
beam sizeL and the propagation coordinate withL2k0n0,
wherek0 is the wave number andn0 is the linear refraction
index. For a Nd:Yag laser withl=1.064mm and a beam size
of L=20l, we obtain that, for materials withn0=1.6, a
propagation distance ofz=1 in our simulations corresponds
to 4 mm approximately. Thus, between 40sFig. 1d and 4000
sFig. 3d layers 335-mm-thick are needed to reproduce our
results, which is achievable experimentally. We can also ob-
tain thatn2uCu2.10−3, whereC is the physical beam. As an
experimental setup, we consider a periodic structure con-
structed with solid glass layers of Ge10As10Se80 sself-
focusing nonlinearityd and a liquid as CS2 sdefocusing ther-
mal nonlinearityd filling the empty spaces between the layers.
For Ge10As10Se80 we have n2=2.2310−4 cm2/GW for l
=1.064mm. Therefore, we need a poweruCu2.5 GW/cm2,
which is quite realistic for a Nd:Yag laser. Finally, by adjust-
ing the length of the pulses, then2 value for CS2 can be
suited adequately to reproduce thegszd function.

A difficulty with a layered setup is the possibility of ret-
roreflection in the interfaces. The reflection coefficient for a
planar wave which incides perpendicular to the boundary
between two linear optical materials with refractive indexes
na andnb is given by

R= Unb − na

nb + na
U2

. s7d

Taking indexes of the formna=n0+n2uCu2 and nb=n0
+n28uCu2 sone focusing and the other one defocusingd, we can
estimate

R< Usn28 − n2duCu2

2n0
U2

. s8d

Takingn2uCu2<10−3 andn28=−6/10n2 as in our simulations
swith n0=1.6 for the two layersd, we haveR<2.5310−7.
Thus, choosing two nonlinear materials with similar linear
refractive indexessas in the case of CS2 and some Ga:La:S-
based glassesd, the number of layers that produce a loss of
10% in the input signal would be about 43105, which ex-
ceeds the stability range of the vortex and is well below the
material losses.

B. Feshbach resonance managed Bose-Einstein condensates

The previous results have also implications in the field of
matter waves because of the close analogy of Eqs.s3d with
the equations of evolution of a multicomponent Bose-
Einstein condensate in the mean-field approximation. The
analysis of vortices in dilute-gas BECs has been a very hot
topic in recent years, especially after their experimental gen-
eration with different setupsf4–6g.

In multicomponent BEC systems, the interaction coeffi-
cientsaij are proportional to the respective scattering lengths.
Although Bose-Einstein condensates are fully three-
dimensional, the effective two-dimensionality can be
achieved by confining the condensate tightly along a specific
directionf26,27g. The conditionN1,0.931a21 has relevance
since it imposes restrictions to the atomic species which can
be used to trap a vortex. For instance, the cross-interaction
coefficient in multicomponent condensates made of different
hyperfine levels of87Rb does not satisfy this condition. How-
ever, bosonic K-Rb mixtures such as the one described in
Refs. f28,29g could be used because of the large scattering
length of the collisions K-Rb. Our predictions would imply
the existence of self-supported vortices which could be gen-
erated using Feshbach resonance management techniques.

V. CONCLUSIONS

In this work, we have studied the possibility of stabilizing
beams with angular momentumsvorticesd propagating in
Kerr media against filamentation and collapse. The proce-
dure used consists in taking an appropriate layered medium
with alternating focusing and defocusing nonlinearities, so
that one can retard the filamentation of the beam. Neverthe-
less, the addition of a slight noise makes the beam break into

FIG. 3. sColor onlined Same as Fig. 2 fora=0.32. sad–sed
Pseudocolor plots ofu2sx,y,zd for z=0, 200, 295, 305, 450.sfd
Isosurface plot ofu2sx,y,zd spanning all the propagation range.sgd
Details of the region in which the vortex spirals out fromu2 for
z[ f280,319g. shd Evolution of the norms of both components
I1
1/2szd, I2

1/2szd showing the readjustment of the norms after the vor-
tex is ejected and a stabilized vector soliton is formed.sid Ampli-
tudes A1szd=maxsx,yd uu1u and A2szd=maxsx,yduu2u of both
components.
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filaments very early so the stabilization mechanism is not
valid in practical situations. One form of avoiding this and
obtaining long propagation distances is to use an incoherent
guiding beam previously stabilized which acts as a trapping
potential for the vortex. We have also discussed the practical
implementation of this stabilizing mechanism in nonlinear
optics and Bose-Einstein condensates.
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